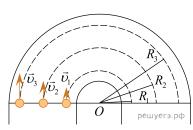

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно. Ответ с погрешностью вида (1.4 ± 0.2) Н записывайте следующим образом: 1.40.2.

Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.

1. На рисунке изображен постоянный магнит. В точку A поместили небольшую магнитную стрелку, которая может свободно вращаться. Установившееся положение стрелки на рисунке обозначено цифрой:



- 1) 1 2) 2
- 3)3
- 5)5
- 2. Частица движется вдоль оси Ох. На рисунке изображён график зависимости координаты х частицы от времени t. В момент времени t = 4 с проекция скорости v_r частицы на ось Ох равна:

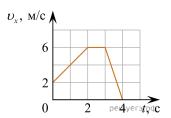
- 1) 2 m/c;
- 2) 1 m/c;
- 3) 0.5 m/c;
- 4) 0.25 m/c;
- 5) -0.5 M/c.

3. Три мотогонщика равномерно движутся по закруглённому участку гоночной трассы, совершая поворот на 180° (см. рис.). Модули их скоростей движения $v_1 = 10 \text{ м/c}, v_2 = 15 \text{ м/c}, v_3 = 20 \text{ м/c},$ а радиусы кривизны траекторий $R_1 = 5.0$ м, $R_2 = 7.5$ м, $R_3 = 9.0$ м. Промежутки времени Δt_1 , Δt_2 , Δt_3 , за которые мотогонщики проедут поворот, связаны соотношением:

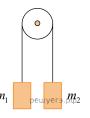
- 1) $\Delta t_1 = \Delta t_2 = \Delta t_3$ 2) $\Delta t_1 > \Delta t_2 > \Delta t_3$ 3) $\Delta t_1 < \Delta t_2 < \Delta t_3$ 5) $\Delta t_1 = \Delta t_2 > \Delta t_3$ 4) $\Delta t_1 > \Delta t_2 = \Delta t_3$
- 4. Тело, брошенное вертикально вниз с некоторой высоты, за последние три секунды движения прошло путь s=135 м. Если модуль начальной скорости тела $\upsilon_0=10,0$ $\frac{\mathrm{M}}{c}$, то промежуток времени Δt , в течение которого тело падало, равен:
 - 1) 3,00 c
- 2) 4,00 c
- 3) 4,50 c
- 4) 5,00 c
- 5) 5,50 c
- 5. Шайба массой m=90 г подлетела к вертикальному борту хоккейной коробки и отскочила от него в противоположном направлении со скоростью, модуль которой остался прежним: $v_2=v_1$. Если модуль изменения импульса шайбы $|\Delta p|=2,7$ $\frac{\mathrm{K}\Gamma\cdot\mathrm{M}}{c}$, то модуль скорости шайбы υ₂ непосредственно после ее удара о борт равен:

1)
$$5\frac{M}{C}$$
 2) $10\frac{M}{C}$ 3) $15\frac{M}{C}$ 4) $20\frac{M}{C}$ 5) $40\frac{M}{C}$

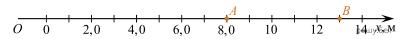
2)
$$10^{\frac{M}{c}}$$

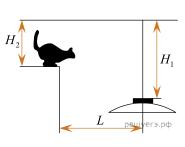

3)
$$15\frac{M}{c}$$

4)
$$20\frac{M}{c}$$
 5)

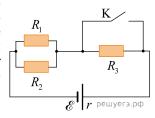

- 6. При спуске в шахту на каждые 12 м атмосферное давление возрастает на 133 Па. Если на поверхности Земли атмосферное давление $p_1 = 101,3$ к Π а, то в шахте на глубине h = 360 м давление р2 равно:
 - 1) 105,3 кПа
- 2) 103,3 кПа 3) 101,7 кПа 4) 99,3 кПа 5) 97,3 кПа

- 7. Идеальный газ массой m=6.0 кг находится в баллоне вместимостью $V=5.0~{\rm m}^3$. Если средняя квадратичная скорость молекул газа $\langle v_{\rm KB} \rangle = 700$ м/с, то его давление p на стенки баллона равно:
 - 1) 0.2 MΠa
- 2) 0.4 MΠa
- 3) 0.6 MΠa
- 4) 0.8 MΠa
- 5) 1.0 MΠa
- 8. Если при изохорном нагревании идеального газа, количество вещества которого постоянно, давление газа увеличилось на $\Delta p = 120$ кПа, а абсолютная температура возросла в k = 2,00раза, то давление p_2 газа в конечном состоянии равно:
 - 1) 180 кПа
- 2) 210 κΠa
- 3) 240 κΠa
- 4) 320 κΠa
- 5) 360 kΠa

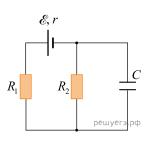

- 9. Идеальный одноатомный газ, количество вещества которого $\upsilon = \frac{1}{8,31}$ моль, отдал количество теплоты $|\mathcal{Q}| = 20$ Дж. Если при этом температура газа уменьшилась на $|\Delta t| = 20$ °C, то:
 - 1) над газом совершили работу A' = 10 Дж;
 - 2) над газом совершили работу A' = 50 Дж; 3) газ не совершал работу A = 0 Дж; 4) газ совершил работу A = 50 Дж; 5) газ совершил работу A = 10 Дж.
- **10.** Если масса электронов, перешедших на эбонитовую палочку при трении ее о шерсть, $m = 18.2 \cdot 10^{-20}$ кг, то заряд палочки q равен:
 - 1) -24 нКл
- 2) -26 нКл
- 3) -28 нКл
- 4) -30 нКл
- 5) -32 нКл
- 11. Материальная точка массой m = 1,5 кг движется вдоль оси Ox. График зависимости проекции скорости v_x материальной точки на эту ось от времени t представлен на рисунке. В момент времени t = 1 с модуль результирующей всех сил F, приложенных к материальной точке, равен ... H.


12. Два небольших груза массами $m_1=0.18~{\rm kr}$ и $m_2=0.27~{\rm kr}$ подвешены на концах невесомой нерастяжимой нити, перекинутой через неподвижный гладкий цилиндр. В начальный момент времени оба груза удерживали на одном уровне в состоянии покоя (см. рис.). Через промежуток времени $\Delta t=0,60~{\rm c}$ после того как их отпустили, модуль перемещения $|\Delta \vec{r}|$ грузов друг относительно друга стал равен ... см.

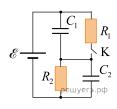
13. Бруску, находящемуся на шероховатой горизонтальной поверхности, ударом сообщили скорость \vec{v}_0 по направлению оси Ox. Если скорость бруска в точке A равна $\vec{v}_A = \frac{3\vec{v}_0}{4}$, а в точке B скорость бруска $\vec{v}_B = \frac{\vec{v}_0}{2}$ (см. рис.), то точка, в которой брусок находился в момент удара, имеет координату x_0 , равную ... дм.



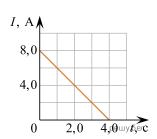
14. Находящийся на шкафу кот массой $m_1=3.0$ кг запрыгивает на светильник, расположенный на расстоянии L=100 см от шкафа (см. рис.). Начальная скорость кота направлена горизонтально. Светильник массой $m_2=2.0$ кг подвешен на невесомом нерастяжимом шнуре на расстоянии H_1 =140 см от потолка. Расстояние от потолка до шкафа $H_2=95$ см. Если пренебречь размерами кота и светильника, то максимальное отклонение светильника с котом от положения равновесия в горизонтальном направлении будет равно ... см.



Примечание. Колебания светильника с котом нельзя считать гармоническими.


- **15.** В баллоне находится смесь газов: углекислый газ ($M_1=44$ $\frac{\Gamma}{\text{моль}}$) и кислород ($M_2=32$ $\frac{\Gamma}{\text{моль}}$). Если парциальное давление углекислого газа в три раза больше парциального давления кислорода, то молярная масса M смеси равна ... $\frac{\Gamma}{\text{моль}}$.
- **16.** Два одинаковых одноименно заряженных металлических шарика находятся в вакууме на расстоянии r=10 см друг от друга. Шарики привели в соприкосновение, а затем развели на прежнее расстояние. Если модуль заряда первого шарика до соприкосновения $|q_1|=1$ нКл, а модуль сил электростатического взаимодействия шариков после соприкосновения F=3,6 мкH, то модуль заряда $|q_2|$ второго шарика до соприкосновения равен ... **нКл**.
- 17. При изотермическом расширении одного моля идеального одноатомного газа, сила давления газа совершила работу $A_1=1,60$ кДж. При последующем изобарном нагревании газу сообщили в два раза большее количество теплоты, чем при изотермическом расширении. Если начальная температура газа $T_1=326$ K, то его конечная температура T_2 равна ... **K**.
- **18.** На рисунке представлена схема электрической цепи, состоящей из источника тока, ключа и трех резисторов, сопротивления которых $R_1=R_2=6,00$ Ом, $R_3=2,00$ Ом. По цепи в течение промежутка времени t=30,0 с проходит электрический ток. Если ЭДС источника тока $\epsilon=12,0$ В, а его внутреннее сопротивление r=1,00 Ом, то работа $A_{\rm CT}$, сторонних сил источника тока при разомкнутом ключе К равна ... Дж.

19. Электрическая цепь состоит из источника постоянного тока с ЭДС ϵ = 120 В и с внутренним сопротивлением r = 2,0 Ом, конденсатора ёмкостью C = 0,60 мкФ и двух резисторов (см. рис.). Если сопротивления резисторов R_1 = R_2 = 5,0 Ом, то заряд q конденсатора равен ... мкКл.



- **20.** Две частицы массами $m_1=m_2=1,00\cdot 10^{-12}~{\rm K}\Gamma,$ заряды которых $q_1=q_2=1,00\cdot 10^{-10}~{\rm K}\pi,$ движутся в вакууме в однородном магнитном поле, индукция B которого перпендикулярна их скоростям. Расстояние $l=200~{\rm cm}$ между частицами остаётся постоянным. Модули скоростей частиц $\upsilon_1=\upsilon_2=15,0~\frac{{\rm m}}{c},$ а их направления противоположны в любой момент времени. Если пренебречь влиянием магнитного поля, создаваемого частицами, то модуль магнитной индукции B поля равен ... мТл.
- **21.** В идеальном колебательном контуре происходят свободные электромагнитные колебания. Амплитудное значение напряжения на конденсаторе U_0 = 20 B, а амплитудное значение силы тока в контуре I_0 = 25 мА. Если электроёмкость конденсатора C = 5,0 мк Φ , то период T колебаний в контуре равен ... мс.
- **22.** В электрической цепи, схема которой представлена на рисунке, ёмкости конденсаторов $C_1=100$ мкФ, $C_2=300$ мкФ, ЭДС источника тока $\mathscr{E}=60,0$ В. Сопротивление резистора R_2 в два раза больше сопротивления резистора R_1 , то есть $R_2=2R_1$. В начальный момент времени ключ K замкнут и через резисторы протекает постоянный ток. Если внутреннее сопротивление источника тока пренебрежимо мало, то после размыкания ключа K в резисторе R_2 выделится количество теплоты Q_2 , равное ... мДж.

- **23.** На дифракционную решётку нормально падает белый свет. Если для излучения с длиной волны $\lambda_1 = 546$ нм дифракционный максимум четвертого порядка ($m_1 = 4$) наблюдается под углом θ , то максимум пятого порядка ($m_2 = 5$) под таким же углом θ будет наблюдаться для излучения с длиной волны λ_2 , равной? Ответ приведите в нанометрах.
- **24.** Два одинаковых положительных точечных заряда расположены в вакууме в двух вершинах равностороннего треугольника. Если потенциал электростатического поля в третьей вершине $\varphi = 30 \text{ B}$, то модуль силы F электростатического взаимодействия между зарядами равен ... нН.

- **25.** Если за время $\Delta t = 30$ суток показания счётчика электроэнергии в квартире увеличились на $\Delta W = 31,7$ кВт · ч, то средняя мощность P, потребляемая электроприборами в квартире, равна ... Вт.
- **26.** Резистор сопротивлением R=10 Ом подключён к источнику тока с ЭДС $\mathcal{E}=13$ В и внутренним сопротивлением r=3,0 Ом. Работа электрического тока A на внешнем участке электрической цепи, совершённая за промежуток времени $\Delta t=9,0$ с, равна ... Дж.
- 27. Электроскутер массой m=130 кг (вместе с водителем) поднимается по дороге с углом наклона к горизонту $\alpha=30^\circ$ с постоянной скоростью \vec{v} . Сила сопротивления движению электроскутера прямо пропорциональна его скорости: $\vec{F}_c=-\beta\vec{v}$, где $\beta=1,25$ $\frac{\text{H}\cdot\text{c}}{\text{M}}$. Напряжение на двигателе электроскутера U=480 В, сила тока в обмотке двигателя I=40 А. Если коэффициент полезного действия двигателя $\eta=85\%$, то модуль скорости v движения электроскутера равен ... $\frac{\text{M}}{c}$.
- **28.** На рисунке представлен график зависимости силы тока I в катушке индуктивностью L=7.0 Гн от времени t. ЭДС $\mathcal{E}_{\mathbf{c}}$ самоиндукции, возникающая в этой катушке, равна ... В.

29. Идеальный колебательный контур состоит из конденсатора электроёмкостью C=150 мкФ и катушки индуктивностью L=1,03 Гн. В начальный момент времени ключ K разомкнут, а конденсатор заряжен (см. рис.). После замыкания ключа заряд конденсатора уменьшится в два раза через минимальный промежуток времени Δt , равный ... мс.

30. Луч света, падающий на тонкую рассеивающую линзу с фокусным расстоянием |F|=30 см, пересекает главную оптическую ось линзы под углом α , а продолжение преломлённого луча пересекает эту ось под углом β . Если отношение $\frac{\mathrm{tg}\,\beta}{\mathrm{tg}\,\alpha}=\frac{5}{2}$, то точка пересечения продолжения преломлённого луча с главной оптической осью находится на расстоянии f от оптического центра линзы, равном ... см.